
JOURNAL OF COMPUTATIONAL PHYSICS 102,381-397 (1992)

Communication Efficient Multi-processor FFT

S. LENNART JOHNSON*, MICHEL JACQIJEMIN,? AND ROBERT L. KRAWITZ

Thinking Machines Corporation, 245 First Street, Cambridge, Massachusetts 02142

Received December 18, 1989; revised October 17, 1991

Computing the fast Fourier transform on a distributed memory
architecture by a direct pipelined radix-2, a bisection, or a multi-
section algorithm, all yield the same communications requirement, if
communication for all FFT stages can be performed concurrently, the
input data is in normal order, and the data allocation is consecutive.
With a cyclic data allocation, or bit-reversed input data and a con-
secutive allocation, multi-sectioning offers a reduced communications
requirement by approximately a factor of two. For a consecutive data
allocation, normal input order, a decimation-in-time FFT requires that
P/N + d- 2 twiddle factors be stored for P elements distributed evenly
over N processors, and the axis that is subject to transformation be
distributed over 2d processors. No communication of twiddle factors is
required. The same storage requirements hold for a decimation-in-fre-
quency FFT, bit-reversed input order, and consecutive data allocation.
The opposite combination of FFT type and data ordering requires a fac-
tor of log, N more storage for N processors. The peak performance for
a Connection Machinesystem CM-200 implementation is 12.9 Gflops/s
in 32-bit precision, and 10.7 Gflops/s in 64-bit precision for unordered
transforms local to each processor. The corresponding execution rates
for ordered transforms are 11 .I Gflops/s and 8.5 Gflops/s, respectively.
For distributed one- and two-dimensional transforms the peak perfor-
mance for unordered transforms exceeds 5 Gflops/s in 32-bit precision
and 3 Gflops/s in 64-bit precision. Three-dimensional transforms
execute at a slightly lower rate. Distributed ordered transforms execute
at a rate of about $ to $ of the unordered transforms. 0 1992 Academic

Press, IllC

1. INTRODUCTION

The main contributions of this paper are communication
efficient multi-processor algorithms for the Cooley-Tukey
fast Fourier transform [2] (FFT). The impact on perfor-
mance of different data layouts is evaluated and an
implementation on the Connection Machine system CM-200
is described. The algorithms are efficient in their use of the
communication system, in particular, systems with pro-
cessors interconnected as Boolean cube networks allowing
concurrent communication on all channels of every pro-

* Also affiliated with the Division of Applied Sciences, Harvard
University.

+ Present address: Department of Computer Science, Yale University.

cessor. The algorithms are also efficient in the use of storage
for twiddle factors with no communication of twiddles
required, when the factors are precomputed. In a distributed
memory architecture a poor choice of FFT algorithm may
require twiddle factors to be communicated, or the storage
requirements may exceed the data storage requirement by a
factor of log, N for N processors. Finally, the algorithms are
also efficient with respect to their use of the bandwidth
between each processor and its memory.

The distribution of data among the memory modules in
a distributed memory architecture has a significant impact
on performance. We briefly discuss this issue for both
one-dimensional and multi-dimensional transforms.

It is well known that the Cooley-Tukey in place FFT
reorders the data, such that after the transform the
component in location i = (i, ~ i i, ~ 2 f . . i,,) has index
(iOil ...ipp2ipp,). The output index is the bit-reversed value
of the input index. An FFT that leaves the output data in
this order is unordered. An ordered FFT has the same data
order for input and output.

The implementations being discussed fully utilize the
communication system for the computations of the unor-
dered FFT. All channels of every processor are used con-
currently. The reordering required for an ordered transform
is made explicitly. Reordering algorithms, and implementa-
tions thereoff are discussed elsewhere [10, 13, 31. No gain
in communication efficiency is possible by interleaving the
reordering with the FFT computations, when all channels
are used for the unordered transform, unlike the case with
communication restricted to one channel at a time [20,22].
For reference, we include performance measurements both
for unordered and ordered transforms.

The feasibility of different implementations of the
Cooley-Tukey algorithm depends critically upon architec-
tural characteristics. In the Connection Machine systems
CM-2 and CM-200 the memory is distributed among up to
2048 floating-point processors. The maximum memory per
processor is 4 Mbytes. In model CM-200, the floating-point
processors support both 32-bit and 64-bit arithmetic. Data
paths internal to the floating-point processors are 64-bits
wide. Each processor has a single 32-bit wide data path to

381 0021-9991/92 $5.00
Copyright 0 1992 by Academic Press, Inc.

All rights of reproduction in any form reserved.

382 JOHNSSON, JACQUEMIN, AND KRAWITZ

its local memory. The processors are interconnected as an
1 l-dimensional Boolean cube, with two communication
channels between each pair of processors. Communication
can be performed on all channels of every processor
concurrently. The primitive communications operation is
an exchange.

The discrete Fourier transform is defined by

P-I

X(f)= 1 0$x(j),
j=O

VIE [O, P- 11, Wp=eP2”“P

and the inverse discrete Fourier transform is defined by

1 P-l
x(I)=+ 1 O,“x(j),

,=O

V'IE [O, P- 11, Op’eP2”“P.

The Cooley-Tukey fast Fourier transform [Z] evaluates
these matrix vector products in log, P stages by recursively
using a splitting formula of the type

P/2 ~ I

X(I)= c u$;2x(2j’)
j’ = 0

P/2 ~ 1

+4 c og;2x(2x(2j’ + 1)
i’=O

‘y I,q /y
(> w./p;:x(2j’)

j’=O

P/2- I

-4 c f4;2x(2j’ + 1)
,‘=O

Index Index
binary binary

FIG. 1. Decimation-in-time FFT.

Index Index
binary binary

I(0) 0000 0000 X(0)
z(1) 0001 1000 X(8)
x(2) 0010 0100 X(4)
s(3) 0011 1100 X(12)
z(4) 0100 0010 -X-(2)
r(5) 0101 1010 X(10)
~(6) 0110 0110 S(6)
s(7) 0111 1110 X(14)
~(8) 1000 0001 X(1)
z(9) 1001 1001 X(9)

X(10) 1010 0101 X(5)
z(11) 1011 1101 X(13)
X(13) 1100 0011 X(3)
2(13) 1101 1011 X(11)
X(14) 1110 0111 .Y(7)
X(15) 1111 1111 X(15)

FIG. 2. Decimation-in-frequency FFT.

for a forward decimation-in-time (DIT) FFT, or of the type

)= 1 0”’ :2-i’ P/2 (x(i)+++;))

for a forward decimation-in-frequency (DIF) FFT. The coef-
ficients 0% are known as twiddlefactors. Both these types of
FFT are known as radix-2 FFTs. The inverse transform can
be computed in the same manner as the forward transform
by using conjugate twiddle factors. Figure 1 shows a radix-
2, DIT FFT, and Fig. 2 shows a radix-2 DIF FFT. The dif-
ference of significance with respect to computing an FFT on
a distributed data structure is that the DIF and DIT FFTs
use the twiddle factors in opposite order. The DIT FFT use
all twiddle factors in the last stage, while the DIF FFT use
all twiddle factors in the first stage. Also, the twiddle factors
for the DIF FFT are ordered in the same way as the input
data, i.e., in normal order for normal order input data, while
the twiddle factors for a DIT FFT are in bit-reversed order
for normal order input. The consequences of these differ-
ences for FFT computations on data sets distributed

TABLE I

Arithmetic and Memory Operations for Radix-2, 4, and 8 FFTs

FFT

Arithmetic Storage
operations references

Add Mult Total Data Twiddles Total

Radix-2 39 2PP 5PP 4PP PP 5PP
Radix-4 PPP 8P 4P SP “p “p tip iPP “p 4 P
Radix-8 &p 24 P 32p 24 P 49 12PP Zp P 24 “p P 24 2lp P 12

COMMUNICATION EFFICIENT MULTI-PROCESSOR FFT 383

Decimation-in-time Decimation-in-frequency

FIG. 3. Radix-4 decimation-in-time and decimation-in-frequency kernels.

throughout the memories of a multi-processor are discussed
in Section 4.

For P = R" the splitting formulas can be generalized to a
radix-R FFT. Figure 3 shows computational kernels corre-
sponding to radix-4 DIT and DTF splitting formulas. Figure
4 shows the computational kernels corresponding to radix-8
DIT and DIF FFTs. For details of the derivations see, for
instance, [16-181.

As the radix of the FFT increases the number of
arithmetic operations decreases somewhat. However, the
main advantage from an increased radix in architectures
with a limited memory bandwidth is a reduced need for
memory accesses [S, 61. The number of real operations
(leading terms only) and’ memory accesses for radix-2, 4,
and 8 kernels are given in Table I. The number of arithmetic
operations for the radix-8 algorithm is approximately 20 %
less than that of the radix-2 algorithm. The exact number of
multiplications and additions can be found, for instance, in
[16]. Whereas the reduction in arithmetic operations is
modest, a radix-8 FFT offers a reduction in the number of
memory operations by a factor of almost three compared to

Decimation-in-time

a radix-2 algorithm. These kernel sizes are relevant for
exploiting the register set in the floating-point processors of
the Connection Machine systems, as discussed in Section 5.3.
At the next level in the memory hierarchy, the local
memory, the radix is equal to the size of the local data set.

The outline of the paper is as follows. We first briefly dis-
cuss the issues of the data allocation, or layout, among the
memory modules. We then discuss the communication
requirements of Cooley-Tukey FFT on multi-processors,
specifically on Boolean cube configured processors. We
compare the requirements of a direct pipelined algorithm
and algorithms based on bi-section, or multi-section,
assuming concurrent communication on all channels of
every processor, which is relevant for the Connection
Machine systems. In Section 4 we discuss the computation
and storage of twiddle factors for distributed FFT computa-
tions, and show how the storage requirements are related to
the data layout and the type of FFT being used. We then
present results from our implementation on the Connection
Machine system CM-200. All performance data are
obtained for complex-to-complex FFT.

Decimation-in-frequency

FIG. 4. Radix-8 decimation-in-time and decimation-in-frequency kernels.

384 JOHNSSON, JACQUEMIN, AND KRAWITZ

Consecutive dat,a allocation Cyclic data allocation

m/ m

FIG. 5. Consecutive and cyclic data allocation of 32 elements to eight processors.

2. DATA ALLOCATION

In a distributed memory multi-processor architecture
data is typically distributed uniformly across the memory
modules at compile time, in order to maximize the potential
concurrency in computation. If there are more data items
than processors, then several data elements must be
allocated to the same memory module. In a consecutive data
allocation [7] successive elements are allocated to the same
memory module. With n bits assigned to the encoding of
processor addresses, the mapping of the array indices to
machine addresses can be viewed as follows, where xi
denotes a bit in the encoding of the data indices:

Consecutive assignment:

(x~Xp-“-lXp~n~~...Xg).

‘P UP

The field denbted rp encodes real processor addresses as
opposed to memory addresses, up. In cyclic assignment the
lowest order bits in the encoding of array indices are
mapped to the processor address field.

Cyclic assignment :

UP ‘P

All data elements with the same n low order bits of their
indices reside in the same processor. In the consecutive
assignment the indices of all elements in a processor have
the same n high order bits. The consecutive and cyclic
allocations of a 32-element one-dimensional array among
eight processors are illustrated in Fig. 5. We consider the
impact of these forms of data allocation on the data motion
requirements for the FFT.

For multi-dimensional arrays each axis is often encoded
separately, as, for instance, is the case in the Connection
Machine programming systems [21]. Still, there is an issue
of how to partition the processors among the axis of the
data array. In the Connection Machine systems the con-
figuration can be controlled through compiler directives.
We discuss how to configure the processors for optimum
performance in Section 5.

3. COMMUNICATION REQUIREMENTS
FOR THE FFT

The data interaction in stage q of a radix-2 FFT is
betweendataelementsiandi02P-Y-1,iE{0, 1,...,2p-1},
where qE (0, 1, p - 1 }. The input stage is stage 0. The
symbol 0 denotes the bit-wise exclusive-or function. Hence,
in a radix-2 FFT the data interaction is between data
elements that differ only in one bit in the encoding of their
respective indices, starting with the most significant bit and
progressing towards the least significant bit. For a radix-2’
FFT the interaction in stage s is between data that differ in
bits {p-(s+l)r, p-((s+l)r+l,...,p-sr-l}, where
s E (0, 1, . ..) p/r - 1 } and we for simplicity assume that r
divides p. For arbitrary p a collection of radices is needed.

Since the data interaction proceeds from the most signifi-
cant digit in the encoding of the data indices towards the
least significant digit, the first n/r radix-2’ stages involve
data motion between processors, when the data allocation is
of the consecutive type. For the cyclic data allocation, the
last n/r stages involve communication. The data motion fits
multi-processors with processors interconnected as a
Boolean cube network very well. Processors in such a
network can be given addresses such that adjacent pro-
cessors differ in precisely one bit, and conversely, there is an
adjacent processor for every bit in the processor address.
Hence, processors j and j@ 2”’ are adjacent for every
m E (0, 1, n - 1 }, and any j E { 0, 1, 2” - 1 }. Clearly,
for a radix-2 FFT, stages corresponding to index bits
mapped to the processor address field imply communica-
tion between directly connected processors. No other
communication is required. A radix-2’ FFT requires
communication between processors forming r-dimensional
subcubes.

For an example of the communication needs consider
Fig. 5. It is easy to see that the first three stages of a radix-2
FFT with consecutive data allocation correspond to
communication between directly connected processors. A
radix-8 stage requires communication between all eight
processors. For the cyclic allocation, the last three stages
require communication between directly connected pro-
cessors. In a direct implementation of the splitting formulas
for a radix-2 FFT a pair of processors exchanges a pair of
data elements, then one computes the “top,” and one the

COMMUNICATION EFFICIENT MULTI-PROCESSOR FFT 385

“bottom.” Each stage requires that P/N elements be
exchanged for a transform on P elements distributed evenly
over N processors. There are n such stages for the axis sub-
ject to transformation distributed across N = 2” processors.
In a multi-processor network with at least n channels per
processor, such as in a Boolean n-cube, only one out of rr
communication channels are used.

A radix-2’ algorithm implemented in an analogous man-
ner would require that each processor in r-dimensional sub-
cubes send one data element to every other processor in the
subcube to which it belongs. After this all-to-all broadcast
within r-cubes [1, lo] each processor computes one output
value for the radix-2’ kernel. For each all-to-all broadcast r
channels can be used concurrently. The number of element
transfers in sequence for each all-to-all broadcast in r-cubes
is (2’ - 1)/r [lo]. The required temporary storage is 2’ - 1.
For large r the increased utilization of the communication
system is accomplished at a significant expense in tem-
porary storage.

The radix-2 implementation presented above suffers from
a slight load imbalance in addition to the inefficiency in
using the communication system. One of the processors in
a pair computes a complex addition, while the other com-
putes a complex multiplication and a complex subtraction.
The radix-2’ algorithm yields a better load balance, but this
gain is accomplished at the expense of redundant computa-
tions. We now consider a few alternative implementation
strategies that yield both increased communication and
computational efficiency. These alternatives were all
considered for the Connection Machine implementation.
The implementation is described in Section 5.

3.1. Direct Pipelining

Pipelining the communications and computations for
successive stages in the FFT is a straightforward way of
increasing the utilization of the communication system.
Pipelining allows d communication channels on every pro-
cessor to be used concurrently in computing an FFT on an
array axis distributed over 2d processors of a Boolean cube
network. The idea is illustrated for a radix-2 FFT in Fig. 6.
In the first communication data is exchanged in the most
significant cube dimension. After the splitting formulas have
been evaluated for these data items, they are ready for the
second stage of the FFT. In the second communication the
first memory location in all processors is exchanged in the
second most significant cube dimension, while the second
memory location is exchanged in the most significant
cube dimension. From the third communication stage all
communication channels are used in every exchange, until
all local memory locations have been touched, at which
point the shut-down of the communications pipeline starts.

The idea of pipelining the communications for the FFT
computations can also be understood by observing that for

581/102/Z-11

FIG. 6. The first four steps of a direct pipelined radix-2 FFT.

a consecutive data allocation over 2d processors, the first d
stages can be viewed as P/N distinct FFTs, each with one
data point per processor. Each such FFT requires com-
munication in the dimensions d- 1, d- 2, 1, 0, one for
each stage of the FFT. Hence, when the first stage of the first
FFT is computed, dimension d - 1 is free to be used for the
computations of the next FFT.

The radix-2, pipelined FFT requires P/N + d - 1 element
transfers in sequence for an axis distributed over d cube
dimensions, with P/N elements per processor. Note that for
multi-dimensional FFTs, d is typically not equal to n, since
more than one axis may be distributed over several pro-
cessors. If P/N B d, then the communication system is fully
utilized effectively all the time. Pipelining offers an improve-
ment in the communication efficiency by a factor of d over
the naive implementation, for P/N% d. It is easily verified
that the claims are true for both the consecutive and cyclic
data allocation. In the following we refer to the above
algorithm as the “direct piplined algorithm.”

The idea of pipelining the communication and computa-
tions for successive FFT stages can be applied to radix-2’
FFT for r > 1, but the pipelined radix-2 FFT offers better
overall efficiency for the reasons given in the previous
section.

3.2. Bi-section

Even though the direct pipelined algorithm above uses
the communication system to about lOO%, the algorithm
actually requires about twice the communicaton of
implementations based on bi-section [143, or multi-section,
or so-called i-cycles [4, 20, 221. The notion of i-cycles for
the computation of FFTs,as used in [20, 221 is equivalent
to our notion of bi-section. We focus on the use of the idea
for communication systems with concurrent communica-

386 JOHNSON, JACQUEMIN, AND KRAWITZ

FIG. 7. The data distribution for a radix-2 FFT based on bi-section
with cyclic data allocation.

tion on multiple channels, whereas the development in
[20, 221 assumes communication on one channel at a time.
This difference in assumption of the capabilities of the
communication system affects the utility of the idea in a
fundamental way. The idea of using bi-section to achieve
load balance and communication efficiency on Boolean
cube networks is not new. It has been used previously for
the solution of systems of tridiagonal equations [8].

The idea of computing an FFT through bi-section is
illustrated in Fig. 7 for a cyclic data allocation with two data
elements per processor. The table shows the location of the
data indices through the course of the algorithm. The first
stage with the cyclic allocation requires no communication.
Each processor evaluates one complete splitting formula. In
the first exchange on the most significant processor dimen-
sion, the first half of the processors exchange the content of
their second memory location with the content of the first
memory location of the second half of the processors. After
this exchange each processor can again perform the com-
putations for one splitting formula, this time for the second

Time
step

0

1

2

3

5

0 1-101-10
1 0 - 0 -
2 --11
3 1 1 J& 4
5 2 2 2 2

0
1 _---
2 0 - 0

II

3 o-o-
4 --11
5 1 1 - -

3sor
4 5
2 2
_

1
_
_ _
_ _
_

_ -

1 1
2 2

I

_ _
_

0
0 -

I

1 1
2 2
_ _

_ _

- 0

1

0
_ _

1 1

1 1
_
2 2 T _ _

_ _

- 0
0 -
1 1

T

_

2 2
_ _

FIG. 8. The first four steps of a pipelined bi-section based radix-
2 FFT.

i

FIG. 9. The data distribution for a radix-2 FFT based on bi-section
with consecutive data allocation.

stage of a radix-2 FFT. The exchange proceeds on suc-
cessively lower processor dimensions, but uses the same
memory locations. Processors with the address bit 0 for the
dimension subject to exchange, exchange their second
memory location, while processors with the address bit 1
exchange their first memory location.

In each exchange a processor sends one out of two data
elements identified by a local memory address bit. All pro-
cessors evaluate P/2N complete splitting formulas after each
communication of P/2N elements per processor. The load is
perfectly balanced, and only half as much data is exchanged
for each FFT stage. The idea of pipelining can be used in
combination with the bi-section idea to fully utilize the com-
munication system. Figure 8 shows the first few exchanges
for a pipelined bi-section algorithm.

The factor of two gain in communication efficiency by
using bi-section may not be fully realizable, or realizable at
all for a consecutive data allocation. To see this fact we
apply the bi-section idea to the consecutive allocation, as
shown in Fig. 9. Note that communication in the most
significant dimension must be performed twice. With con-
current communication on all channels a pipelined bi-sec-
tion algorithm requires 2(P/2N) + d- 1 element transfers in
sequence, ignoring a possible overlap between the second
exchange in the most significant dimension and the pipeline
filling time. Hence, for the consecutive data allocation and
concurrent communication on all channels, the com-
munication requirements are the same as for the direct
pipelined algorithm.

The FFT implementation based on bi-section reorders
the data, in addition to the bit-reversal due to the FFT itself,
unlike the direct pipelined FFT. That a reordering takes
place is apparent from Figs. 7 and 9, which both show the
location of the original data indices. The data motion
caused by the sequence of bi-sections implements an
u&ruffle. An unshuflle is the inverse of a shuffle, which
perfectly interleaves the first and second half of a set of
numbers. For instance, a shuffle on the set (0, 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 153 produces the set (0, 8, 1, 9,
2, 10, 3, 11,4, 12, 5, 13, 6, 14, 7, 15}. Changing the last data
ordering to the first corresponds to the reordering in Fig. 7.

COMMUNICATION EFFICIENT MULTI-PROCESSOR FFT 387

The data reordering for the cyclic data allocation can be
represented formally in terms of the encoding of the address
space as shown below. The overline marks address bits that
have been exchanged in the step indicated on the left. For
instance, after the first exchange step, bits x, and x, _ r have
been exchanged. In an exchange, only data that differ in the
values of the index bits are moved. For instance, in the first
exchange only data for which x, Ox, ~, = 1 are moved:

Initial allocation: (xp ~ i . . x,, x, _, x, ~ 2 . . . x0)

Step 1:

UP ‘P

(Xp-l - - “‘X,-I X,X,-2’..XO).

Step 2:

Step n: (xp- I . ..q x;..x,).
--

UP rP

In this example the same memory dimension is used for all
exchanges. Upon completion of the bi-section process the
bits in the processor address, together with the local
memory bit used for all exchanges, have been subject to a
right cyclic shift, which defines an unshuffle. The local
memory bit can be chosen arbitrarily. Using the least signili-
cant memory bit implies that every other location is subject
to exchange, and the stride is two. If the most significant
memory dimension is used, then a block equal to half of the
local memory is exchanged, and the stride is one within the
block. The number of memory references are the same,
but architectural characteristics such as page faults,
communications overhead, etc., may make the strategy for
selecting the local memory bit important with respect to
performance.

For the consecutive data allocation we use the exchange
sequence for the cyclic allocation augmented with one
additional exchange, as illustrated below:

Initial allocation:

Step 2: (X,~.~,~...X,- ,, ~x,1-* . ..xcJ
-v-w

‘P VP

Step n: (Xp-“~,Xp-, . ..Xp--n+l XpnXp-n--Z...Xg)
V

‘P UP

Stepn+ 1: (Xp--n~~-i...x~~~+~ xp-n--1xp--n--2...x0).

rP UP

In this case an unshuffle permutation has been performed
on the processor address field. The local memory address
field is not reordered, as can be seen in Fig. 9. Pairs of local
memory locations contain even-odd pairs of successive data
indices.

3.3. Multi-section

The idea of bi-section can be generalized to multi-section
to support high radix FFT. A R = 2’-way splitting implies
matrix transposition, or all-to-all personalized communica-
tion [10,9, 133 in r-dimensional subcubes. After each
2’sectioning step a radix-2’ FFT can be performed locally
in each processor. Figure 10 illustrates multi-sectioning for
the inter-processor communication steps for p = 6 and n = 4
and cyclic data allocation. The numbers in the table are the
initial indices. The first partitioning step is a matrix trans-
position within each subcube of dimension two with respect
to the two highest order real processor dimensions. For
instance, processors 0,4, 8, and 12 are in the same subcube.
The bit interchanges corresponding to multi-sectioning
are illustrated below for cyclic data allocation. As in the
bi-section case there exist many ways in which partitioning of
the local data can be performed throughout the algorithm,
resulting in different final orderings:

Proc. id. PO PI p2 p3 P4 Ps P6 4 Ps P9 40 PII 1’12 63 PM SS

0 1 2 3 4 5 G 7 8 9 10 11 12 13 14 15

Initially 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 5G 57 58 59 GO 61 62 F3

0 1 2 3 16 17 18 19 32 33 34 3.5 48 49 50 51
1st 4 5 G 7 20 21 22 23 36 37 38 39 52 53 54 55

part. 8 9 10 11 24 25 26 27 40 41 42 43 56 57 58 59
12 13 14 15 28 29 30 31 44 45 46 47 GO 61 62 63

0 4 8 12 lti 20 24 28 32 36 40 44 48 52 56 GO
2nd 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

part. 2 G 10 14 18 22 26 30 34 38 42 46 50 54 58 62

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

FIG. 10. The data distribution for a 4-sectioning, radix-4 FFT for 16 processors and four elements per processor.

388 JOHNSSON, JACQUEMIN, AND KRAWITZ

Initial allocation:(x, _, xp _ 2 . . . x, x, ~ I . . . x0).

UP ,P

1st 2’-section: (yxn-2 “.Xn-rXp~r-1Xp-r-2...x~ Xp~~Xp~2~~~Xp~rX,~,~~~~~X~).
V -I
UP ‘P

Step n/r:

XXp~~Xp~~~~~Xp~,Xn~lX,~2~~~XZ,X~,~lX2,~2 . . . x,).
\ V ,

For a 4-section algorithm, two bits are involved in every
step. For a 2’-section algorithm, r bits are involved in each
permutation. Sectioning steps for successive radix-2’ stages
involves consecutive blocks of r dimensions. The com-
munication for the 2’-sectioning on blocks of r different
processor dimensions can be pipelined. The number of
element transfers in sequence is P/2N + (rn/rl - 1) 2’~ ’ for
cyclic data allocation. An in-place sectioning requires that
2’6 P/N, or r d p -n, since the size of the local data
set involved in a 2’-section is 2’. For p > 2n (P > N2) a
2”-sectioning minimizes the number of element transfers in
sequence, since there is no pipeline start-up or shutdown in
this case. Next to 2”-sectioning, 4-sectioning minimizes
the number of element transfers in sequence, since there
is no pipeline start-up or shutdown in this case. Next to
2”-sectioning, 4-sectioning is the best choice with respect to
the number of element transfers in sequence. Bi-sectioning is
insignificantly inferior with respect to the inter-processor
communication requirements. For small values of r the
variance in communication efficiency is small, and the
choice of r is largely determined by the efficiency in
evaluating the splitting formulas.

With a consecutive data allocation the r most significant
processor dimensions must be used twice, and a pipelined
multi-section algorithm requires P/N + (rn/rl - 1) 2’-’
element transfers in sequence, essentially the same as for the
direct pipelined algorithm.

3.4. Discussion and Summary of Algorithms

In all derivations above the input order was normal. With
the input in bit-reversed order the traversal of the address
bits proceeds from the lowest to the highest order bit. With
respect to the communication issues, the roles of the
consecutive and cyclic mapping are interchanged. Forward
and inverse transforms only differ in that one is computed

,P

using the conjugate values of the twiddle factors of the
other. There are no particular issues with respect to multi-
processors for one that is not present in the other.

A multi-dimensional FFT can be performed as a sequence
of one-dimensional FFTs for the different axes. Performed
in this way the only issue unique to multi-dimensional FFT
is how to partition the set of processors among the axes. We
discuss this issue in the context of the Connection Machine
implementation, see Section 5.

The communication requirements for the consecutive
and cyclic data allocations are summarized in Table II.
The communication requirements assume concurrent
communication on all channels. With a consecutive data
allocation all algorithms yield the same communication
requirements for an unordered transform, with data in
normal input order. The output ordering is bit-reversed for
the direct pipelined algorithm and shuflled bit-reversed for
the pipelined bi-section or multi-section algorithms. With a
cyclic data allocation and normal input order, the bi-section
and multi-section type algorithms require approximately
half as many element transfers in sequence as the direct
pipelined algorithm. With a bit-reversed input order all
algorithms essentially have the same communication
requirements for the cyclic data allocation, while the
bi-section or multi-section algorithms offer a reduction in
the communications requirements for the consecutive data
allocation.

For an ordered transform an explicit reordering phase is
required. Interleaving the reordering with the FFT com-
putation offers no gain in communications efficiency, when
all communications channels are utilized for the unordered
transform, unlike the case where only one channel at a time
is used [20, 221. The reordering requires the same number
of element transfers in sequence for a pure bit-reversal
operation, or a combined shuffle with bit-reversal, assuming
concurrent communication on all channels [12, 131. The

COMMUNICATION EFFICIENT MULTI-PROCESSOR FFT 389

TABLE II

Communication Requirements for Unordered Transforms, with Concurrent Communication on All Channels,
and Consecutive and Cyclic Ordering

Algorithm Element transfers Input order Output order

Direct pipeline

Bisection

Multi-section

Direct Pipeline ’

Bi-section

Multi-section

Consecutive allocation

Normal

Normal

Normal

Cyclic allocation

Normal

Normal

Normal

Bit-reversed

ShutBed & bit-reversed

ShuBled & bit-reversed

Bit-reversed

Shufled & bit-reversed

Shufled & bit-reversed

number of element transfers in sequence for the reordering the first radix-2 stage the twiddle factor index is
is P/2N. For details see [12, 131. (+1)x (up-2q-3 . , . a,) for the data element in location

(ape lup-2 ... a,). The radix-2 twiddle factors can be

4. TWIDDLE FACTORS
derived from the following iterative formulation of the
DIF FFT:

The total number of twiddle factors needed for a radix-R
FFT of size P is (R - l)(P/R). For the computation of an
FFT on a distributed memory architecture using precom-
puted twiddle factors, it is important to minimize the need
for either redundant storage of twiddle factors or com-
munication of twiddle factors should they be required in a
processor different from the one in which they are stored.

In [lS] we show that a radix-2 DIT FFT with precom-
puted twiddle factors and data in normal order allocated
consecutively requires a maximum of P/2N + d - 2 twiddle
factors in a processor. A DIF FFT with bit-reversed input
order and consecutive allocation requires the same twiddle
factors. A radix-2 DIT FFT on normal order input
allocated cyclically, or a DIF FFT on bit-reversed data
allocated cyclically requires a maximum of (n - l)(P/N)
twiddle factors in a processor [15]. Hence, the data
allocation has a significant impact on the need for twiddle
factor storage. Below, we give algorithms for computation
of twiddle factor indices, based on memory addresses, for
high radix FFT.

Ll(U,-,)...) u,)=x(upp,)...) uo)

%(qJ - I ” a.*, 4 = (Ll(O, up-2, ..‘> %)

+ COY-’ KJl, ap-2, a,))

x 4+2 %.... uoo)q-,

%,(a,-, , . ..) a,) = (~o(u,~ *, 0, up-j, . ..) a,)

+0 p-2%)(q- I, 1, up-3, 43))

x w<up-3’....uo>u’p-2
PI2

-qa,- 1, ~o)=(~,-,(~,-,,...,o,~,~,,...,u~)

+ oL;p-y-‘.q- ,(a,- 1) . ..) l,_,- 1) . ..) UC)))

x W<~~-“-2’...‘Uo)u”r,rll
PI24

-fp-l(up- I,..., a,)=(.&,(a,- I, ..., a1 9 0)

+o;“~-p-2(up--1, . ..) a,, l))fi@

4.1. Decimation-in-Frequency FFT X(a,-,, uo)=i,-,(a, ,..., a,-,).

We first give a formula for the twiddle factor indices Note that, in the expression for Zp-, , the value of WY is 1:
for a radix-2 in place DIF FFT with normal order input, no twiddle factors are needed in the last stage. For a radix-R
then generalize the formula to radix-R DIF FFT. For in place DIF FFT with normal order input we let

390 JOHNSON, JACQUEh

sECO,U-l],whereu=log,P=p/r,and(d,~,d,_,...d,)
be the addresses in base R. Then,

I-,(d,-1, . ..) do) = x(4- I, . ..1 do)
n

R-l

x 1 -f-l(Ll,L.,j,

R-1

.fu-l(d,-l ,..., do)=wyi,-, 1 a,-,(d,-, ,..., d,,j)oc

j=O n
X(4-,, do) =Z’,- ,(i$, d,- 1),

where the bit-reversed value of a digit di is $ (bit-reversal of
the digit occurs because we want to keep the same ordering
as with the radix-2 computation). As in the radix-2 case, no
twiddle factors are needed in the last stage: the value of
oo$.

F’ lS l: he twiddle factor index for data in location
n

(d,-,d,-,...d,,) is d,-, x (dup,d,_,...d,,) for the first
stage. For the second radix-R stage the set of twiddle

factor indices is dzx (d, ~ 3 d, _ 4 . . . do) 2’. In general,
for a radix-R in-place DIF FFT on normal order input
data, the twiddle factor index for the data in location

(d,- ,dup2 . ..d.) after the sth radix R stage is duz 1 x
(du-s-2du-s-3 . ..d.,) 2”‘.

For a distributed data set we consider the need for
twiddle factors in a processor first for the local stages and

dIN, AND KRAWITZ

factors needed in a processor is P/N + (rn/rl - 1)(2’- 1) - 1
for cyclic data allocation, normal input order, and a radix-2’
DIF FFT of size P computed on N processors, N 6 P.
Allocating twiddle factor storage uniformly across all
processors yields a total twiddle factor storage of P - N +
(m/r] - 1)(2’- 1)N, which for P B N is about twice the
storage required on a shared memory computer. The same
twiddle storage is required for a bit-reversed input order
and a consecutive data allocation. Normal input order and
consecutive data allocation, or cyclic allocation with
bit-reversed input order would require considerably more
storage, for the same reasons as in the radix-2 case [151.

4.2. Decimation-in-Time FFT

As in the DIF case we first consider the radix-2 case and
then generalize to the radix-2’ case:

L l(a,pl, a,) = $a,- 1, ao)

Zo(appl, a,)=L,(O, appz, ao)

+o~-‘o~K- ,(l, app2, ao)

-%(a, - 1, ao)=.fl(a,-,, 0, ap-3, a,)

+ OpfJ (apml>Kl(a,-l, 1, ape3, ao) 4

then for stages requiring communication. With a data set
of size P = 2p in normal order distributed cyclically over -fp- l(a,- ,, ao)=fppZ(app 1, a
N = 2” processors the computations corresponding to the
first (u - n)/r radix-2’ stages are local to the processors. For

+ o~ocp...‘up--’

simplicity, we assume that u and n are multiples of r. The
twiddle factor indices for stage s required in processor

X(a,- ,, ao) = .fp- ,(a,, app

‘12 0)

>Tp-2(a,-l, aI, 1)

) I .

(d,,,-, . ..d.,) are {d~~,}x({d,-,-,d,~,~,...d,,,}
A,, - 1 ... do) 2”‘. The notation { ... } denotes the set of all
values that can be assumed by the digit string within the
braces. When P/N is a multiple of R, then (P/N - 1) twiddle
factors are needed for the local stages.

The stages requiring communication correspond to
computing P/N independent FFTs of size N, each with one
element per processor. All P/N FFTs require the same set
of twiddle factors in a processor. A total of at most
(rn/rl - 1)(2’ - 1) twiddle factors are needed in a processor
for these stages (one set for each radix-R butterfly stage,
except the last stage). The property that the twiddle factor
only depends upon the processor address, and is the same
for all local elements, is the same for the direct pipelined
algorithm and the bi-section or multi-section algorithms.

To summarize, the maximum number of distinct twiddle

Note that, in the expression for lo, the value of c$ is 1: no
twiddle factors are needed in the first stage. A radix-R
in-place DIT FFT with input data in normal order can be
written as

I-,(d,- ,, do) = x(d,- ,, do)
R-1 /\ /\A

-f,(d,- I >
uo) = 1 w~-,-tiw~~js....,d,~i>l

j=O

~~~-~(d,-~, . . . . L,,j, du--s-2, . . . . 4) 
R-1 

2, 
n 

Ll(d,-1, 
(6 ,.... rl.-,)i 

. . . . uo)= c m;mP 
j=O 

x L Ad, - 1, . . . . 4 J) 

X(4- 1, . . . . do) = Z,- ,(d;, . . . . dz). 



COMMUNICATION EFFICIENT MULTI-PROCESSOR FFT 391 

FFT Data allot. 

TABLE III 

Radix-2’ Twiddle Factor Storage as a Function of Input Order 

Twiddle index stage s 

Normal input order 

Max. number of 
twiddles per proc. 

DIT Consec. “--n,r-,}d,_,,,.~.d~)2P-(J+‘)r 

DIF 

DIT 

Cyclic. 

Cyclic. 

(d~}x((d,-,_,d”-,_,~..d”,,}d,,,-,.~~d,)25’ 

Bit-reversed input order 

{d~,}x({d.-,-,d,-,-,...d”,,}d.,~-,-..d,)2” 

DIF Consec. $+;-2 

The indices of the twiddle factors are all zero for the first 

stage, jx dc2pe2’ for the second radix-R stage, and 

jx(dc . . . d:) 2 - p (‘+ ‘jr for stage number s. Note, that 
the address is bit-reversed and shifted for the proper 
exponent. If the P complex data points are allocated con- 
secutively and are in normal order, then the data in address 
location (d, _ I d, ~ 2 ... d,,) require twiddle factors with 

indices {j} x ({dG...dzI} d~~...d~)2p-(s+1)’ 
for stage s of an in-place DIT algorithm. With a consecutive 
data allocation the processor address bits form the high 
order bits of the element index. The first n/r radix-R 
butterfly stages correspond to P/N independent FFTs of 
size N. All these FFTs require the same set of twiddle 
factors. The local addresses do not enter into the index 
computation. Moreover, the first stage does not require any 
twiddle factor. The last u - n/r radix-R stages are local to a 
processor. The maximum total number of twiddle factors 
required in a processor is P/N + (rn/rl - 1)(2’- 1) - 1, the 
same as for cyclic data allocation, normal input order, and 
in-place DIF FFT. The set of twiddle factors required in a 
processor is identical to those required for consecutive data 
allocation, bit-reversed input order, and a DIF in-place 
FFT. The number of twiddle factors required for a DIT 
FFT with input data in bit-reversed order and a consecutive 
data allocation is excessive, see [ 151. 

4.3. Summary of Twiddle Factor Storage Requirements 

The preferred combinations of data allocation and FFT 
type are summarized in Table III. 

For multi-dimensional FFT each axis has its set of 
twiddle factors. The twiddle factors for an axis is a subset of 
the twiddle factors for the longest axis. With axes of length 
P, x P, x x Pk the minimum number of twiddle factors 

is max,(R - l)(P,/R). With separate storage of the twiddle 
factors for each axis the total storage is C, (R - l)(PJR), 
which is still less than the storage required for a one- 
dimensional FFT of size I7,P,. 

The inverse discrete Fourier transform can be computed 
as a discrete Fourier transform by using conjugate twiddle 
factors. 

5. A CONNECTION MACHINE IMPLEMENTATION 

5.1. Overview 

The consecutive data allocation is used by all compilers 
for the Connection Machine systems. In our implementation 
a DIT FFT is used for data in normal input order, and a 
DIF FFT is used for bit-reversed input order. This com- 
bination of data input order and FFT type minimizes the 
requirements for twiddle factor storage. The inverse discrete 
Fourier transform is computed using conjugate twiddle 
factors. Multi-dimensional FFT are computed as a 
sequence of one-dimensional FFT, with all one-dimensional 
FFTs along an axis computed concurrently. For ease of 
implementation twiddle factors are allocated independently 
for each axis. For P data points allocated evenly over N 
processors the number of twiddle factors per processor for 
an axis allocated over 2d processors is P/N + d - 1. 

For simplicity and efficiency the direct pipelined algo- 
rithm is used for FFT stages requiring communication, 
Since all Connection Machine compilers use the consecutive 
data allocation scheme and communication can be per- 
formed concurrently on all communication channels of 
every processor, the bi-section and multi-section techniques 
do not offer any reduction in the communication time com- 
pared to the direct pipelined algorithm. Indeed, on the Con- 
nection Machine systems the b&section and multi-section 



392 JOHNSSON, JACQUEMIN. AND KRAWITZ 

techniques require more time for a data exchange between 
a pair of processors than the direct pipelined algorithm. The 
reason for this difference is that the exchanges in the direct 
pipelined algorithm take place between memory locations 
with the same local addresses in different processors, while 
the other algorithms require that the elements in an 
exchange have different local memory addresses. Depending 
on algorithm [3, 131 the increase in the time of an exchange 
is in the range 3&100% for the Connection Machine 
systems CM-2 and CM-200. The increased communication 
time due to this reduction in communication efficiency is in 
many cases greater than the reduction in time for evaluating 
the splitting formulas by radix-4 or 8 kernels instead of by 
radix-2 kernels. 

In the direct pipelined algorithm the FFT stages requiring 
communication are computed using a radix-2 algorithm. 
Local stages are computed using a mix of radix-2, 4, and 8 
kernels. For efficiency, as many stages as possible are per- 
formed using the radix-8 kernels. To increase the efficiency 
of the radix-2 kernels for the inter-processor communica- 
tion stages, data caching is performed as explained in 
Section 5.2. 

Reordering for ordered transforms is performed 
explicitly. Interleaving the reordering with the computation 
of the unordered transform would not gain any efficiency 
with respect to communication, since all communication 
channels are already used by the unordered FFT. For 
details of algorithms see [3, 10, 133. Timings are presented 
for both the unordered and ordered FFT. 

All performance data presented below refer to complex- 
to-complex transforms performed on the Connection 
Machine system CM-200. The data is assumed to be 
presented in normal order for the DIT FFT and bit-reversed 
order for the DIF FFT. A standard binary encoding of the 
indices for each axis is assumed. For Boolean cube multi- 
processors a common encoding of array indices is the 
binary-reflected Gray code encoding [ 191. This encoding is 
also supported on the Connection Machine systems. FFT 
algorithms for this type of data encoding can be found in 
[ 1 I]. Those algorithms have not yet been implemented on 
the Connection Machine systems. 

5.2. Organization of the Inter-Processor Communication 
Stages 

For the inter-processor communication stages, direct 
pipelined radix-2 DIT or DIF FFT algorithms are used for 
normal and bit-reversed input order, respectively. For each 
interprocessor communication FFT stage, a single twiddle 
factor is needed for all local data elements. The total number 
of twiddle factors needed in each processor is equal to the 
number of processor dimensions d over which the data set 
is distributed. d is the number of FFT stages requiring 
communication. For the direct pipelined algorithm d data 

elements are exchanged in each communication, except 
during the start-up and shutdown of the communications 
pipeline; d butterfly computations can be performed after 
each communication. The butterfly computations belong to 
different stages and require different twiddles. 

As is apparent from Fig. 6 in Section 3.1 each local data 
element is updated d times in succession. No further updates 
are required for the inter-processor communication phase. 
In order to reduce the number of loads and stores to local 
memory, the local data items are cached in the register set 
of the floating-point unit. Twiddle factors are (re)read from 
memory. The data caching scheme is used for up to 10 
dimensions. For 11 dimensions there are insufficient 
registers in the floating-point unit, resulting in a perfor- 
mance loss, as can be seen from the timings in Section 5.5. 

Another detail that deserves to be mentioned addresses 
the SIMD (single instruction multiple data) nature of the 
Connection Machine systems CM-2 and CM-200. In the 
butterfly computations one processor in a pair performs a 
complex addition and the other a complex subtraction. 
By integrating the negation of one of the operands into 
the communication, both arithmetic operations can be 
performed concurrently with no measurable loss in efficiency. 

5.3. Organization of the Local FFT Stages 

The current floating-point unit of the Connection 
Machine systems CM-2 and CM-200, has a register tile of 32 
registers, which is sufficient to keep all the twiddle factors 
and the temporary variables for the radix-2 and radix-4 
kernels. For the radix-8 kernel, the twiddle factors are 
brought in from memory as they are needed and only the 
temporary variables are kept in the registers. For kernels of 
higher radices, temporary results would have to be stored in 
memory. For that reason, we only implemented the radix-2, 
radix-4, and radix-8 kernels. 

To handle data sets of any power-of-two (on-processor) 
size, it is necessary to mix kernels of different radices. Our 
implementation does as much of the computation as 
possible with radix-8 kernels, using one stage of radix-2 or 
radix-4 kernels to handle the remainder of the computation 
when the size is not a power of 8. 

An FFT algorithm is typically expressed in terms of three 
nested loops. The outermost loop ranges over the stages of 
the FFT (“stage loop”). The two inner loops range over the 
groups (a group is a set of kernels which use the same set of 
twiddle factors) in each stage (“group loop”) and over all 
the kernels in each group (“kernel loop”). With this 
organization, the twiddle factors for all the kernels in each 
group can be kept in the register file during the extent of the 
kernel loop; they are loaded at the beginning of the kernel 
loop and need not be loaded for each kernel. For radix-8 
kernels, only part of the twiddle factors can be kept in 
registers, due to the register file size. 



393 COMMUNICATION EFFICIENT MULTI-PROCESSOR FFT 

TABLE IV 

Number of Groups and Kernels per Group 

FFT type Radix-Y stage nb-groups (s, r) nb-kernels (s, r) 

DIT, normal order input 
P 

s 2”’ p+I)‘N 

DIF, bit-reversed input 
P 

s p+“‘j-f 2” 

The number of groups and the number of kernels in a 
group change from stage to stage. The product of the num- 
ber of groups and the number of kernels in a group is the 
total number of kernels in a stage, which is equal to the local 
FFT size divided by the size of the current kernel. Table IV 
gives the number of groups and the number of kernels of size 
R = 2’ per group, for a given radix-2’ butterfly stage s, when 
there are P/N elements per processor. The loop structure is 
given by the following pseudocode (it assumes for simplicity 
that the kernel size is always the same, but it can be easily 
generalized): 

for s :=o to (P-nyr-1 
forg :=Otonb-groups(s,r) 

fork :=Oto nb-kernels(s,r) 
call kernel of size 2’ on the appropriate data 

For example, an FFT of size 128 computed by DIF, consists 
of three stages: 

l one stage of 16 groups, each with one radix-8 kernel 

l one stage of two groups, each with eight radix-8 
kernels 

l one stage of one group, with 64 radix-2 kernels. 

In the last stage, only the first radix-2 kernel needs to load 
the twiddle factor from memory to the register file; the other 
63 kernels will use the twiddle factor already in the register 
file. 

5.4. The Twiddle Factors 

In stage s (as defined above), a radix-R FFT (R= 2’) 
needs R - 1 twiddle factors per kernel. Since all the kernels 
in one group use the same set of twiddle factors, the number 
of twiddle factors used in one stage is the number of groups 
multiplied by R - 1. Hence, in stage s, with P/N elements 
per processor, the DIT FFT needs (R - 1) 2”’ different twid- 
dle factors, and the DIF FFT needs ((R - 1)/2’“+‘).7(P/N) 
twiddle factors. For all the stages, both of these add up to 
P/N - 1. There are P-N twiddle factors used in total for 
the local part of the FFT. 

Axis length 

TABLEV 

Performance Data for Local, Unordered, CCFFT on a 2048 Processor CM-200 

TIME (ms) Gflops/s 

32-bit prec. 64-bit prec. 32-bit prec. &l-bit prec. 

DIT DIF DIT DIF DIT DIF DIT DIF 

32 0.18 0.17 
64 0.35 0.33 

128 0.84 0.80 
256 1.94 1.82 
512 3.92 3.66 

1024 9.07 8.69 
2048 20.66 19.44 
4096 41.79 39.29 
8192 93.65 89.69 

16384 207.86 196.21 
32768 419.82 395.98 
65536 920.42 881.03 

131072 2005.73 1897.08 
262144 4355.31 4167.26 

0.23 0.21 
0.43 0.39 
1.12 1.07 
2.48 2.24 
4.92 4.42 

12.05 11.34 
26.60 24.01 
53.00 47.75 

123.92 115.60 
268.28 242.17 
535.17 482.54 

1213.82 1126.12 
2737.99 2593.42 

9.077 9.476 
11.293 12.032 
10.958 11.396 
10.825 11.504 
12.051 12.887 
11.565 12.065 
11.167 11.865 
12.043 12.809 
11.644 12.159 
11.300 11.971 
11.989 12.711 
11.666 12.187 
11.376 12.027 
11.094 11.595 

7.211 7.896 
9.170 10.171 
8.157 8.567 
8.449 9.378 
9.599 10.669 
8.700 9.249 
8.671 9.609 
9.496 10.541 
8.800 9.434 
8.755 9.699 
9.405 10.431 
8.846 9.535 
8.333 8.798 



394 JOHNSON, JACQUEMIN, AND KRAWITZ 

TABLE VI 

Performance Data for Local, Ordered, CCFFT on a 2048 Processor CM-200 

Axis length 

Time (ms) Gflops/s 

32-bit prec. 64-bit prec. 32-bit prec. 64-bit prec. 

DIT DIF DIT DIF DIT DIF DIT DIF 

32 
64 

128 
256 
512 

1024 
2048 

8192 
16384 
32768 
65536 

131072 
262144 

0.23 0.23 
0.45 0.43 
1.04 1.01 
2.35 2.24 
4.74 4.49 

10.74 10.37 
24.04 22.84 
48.65 46.16 

107.41 103.48 
235.51 223.91 
475.21 451.45 

1031.33 992.09 
2227.67 2119.29 
4801.31 4615.54 

0.33 0.32 
0.63 0.59 
1.53 1.49 
3.32 3.08 
6.59 6.10 

15.45 14.74 
33.47 30.87 
66.83 61.58 

151.64 143.33 
323.89 297.81 
646.46 593.88 

1436.59 1349.00 
3183.99 3039.30 

7.062 7.155 
8.680 9.123 
8.814 9.075 
8.916 9.354 
9.961 10.516 
9.765 10.116 
9.595 10.101 

10.346 10.903 
10.152 10.538 
9.973 10.490 

10.591 11.149 
10.411 10.823 
10.243 10.766 
10.064 10.469 

4.965 5.201 
6.192 6.631 
5.977 6.178 
6.309 6.805 
7.162 7.742 
6.786 7.112 
6.892 7.473 
7.531 8.173 
7.191 7.608 
7.252 7.887 
7.786 8.475 
7.474 7.960 
7.166 7.507 

The DIT FFT is performed on data stored in normal 
order. For stage S, processor Ni needs the twiddle factors 

A 
IX N,llp 

Wy+,S+l),, Jo 11, R- 11, 

for the kernels in group g, where x 11 y is the concatenation 
of x and y. For the DIF FFT with cyclic data allocation and 
the input in bit-reversed order, the twiddle factors used by 
the kernels in group g in processor Ni at stage s are 

A 
ix NilI 

w2p-sr 7 je [l, R- 11. 

If the substitution s c (p - n)/r - s - 1 is made in the 
expression above, we obtain exactly the expression for DIT 
twiddle factors. The DIF and the DIT FFTs are thus using 

GAops/s 
13- - . . 
12. . .* a. - . . 32-&t 11. . . DIF, precision 

o lo- 0 0 0 

9. . ~ 0 oo~o 

0 
6. 

o DIT, 64.bit precision 
0 

G 

5 

4 

'i 

3 

2 

1 

0 Log FFT size 
0 5 10 15 20 

FIG. 11. The performance of local, unordered, DIF CCFFT on a 2048 
processor CM-200. 

the same set of twiddle factors, but are using them in reverse 
orders. Our implementation only uses one table of twiddle 
factors for both the DIT and the DIF FFTs. 

The following pseudo-code reflects exactly how the table 
of twiddle factors is stored in the processor memory. It 
generates them in the order used by the DIT FFT: 

twiddle-pointer:=0 
for s :=O to (P-n)/r-1 

forg:=Otonb-groups(s,r) 
forj:=lto 2'-1 

twiddle[twiddle-pointer] :=u::+:$~, 
twiddle-pointer :=twiddle-pointer+1 

5.5. Performance Measurements 

The performance measurements below have been made 
on a Connection Machine system CM-200 with 2048 64-bit 

Gflopsjs 

5- 

4- 

. 2-D. 32.bit precision 
. 

. 
. 

3- . 0 
0 2-D. 64-bit precision 

3-D, 32-bit prec. ’ ’ , ’ o 
2- . . 

. 0 

3-D, 64.bit preg 0 o o 0 
l- 0 

0 I I I I I I I I, I I1 1 I Log( Axis Length) 

0123456 i 8 9 10 11 12 13 14 15 

FIG. 12. The execution rate for two- and three-dimensional, 
unordered, DIT CCFFT on a 2048 processor CM-200. 



COMMUNICATION EFFICIENT MULTI-PROCESSOR FFT 395 

TABLE VII 

Performance Data for Two- and Three-Dimensional, Unordered, CCFFT on a 2048 Processor CM-200 

Axis length 

Time (ms) Gflops/s 

32-bit prec. 64-bit prec. 32-bit prec. 64-bit prec. 

DIT DIF DIT DIF DIT DIF DIT DIF 

256 x 256 2.8 2.8 4.7 4.7 1.862 1.856 1.118 1.115 
512 x 512 10.6 10.8 17.6 17.8 2.227 2.181 1.340 1.325 

1024 x 1024 43.0 43.0 71.1 73.1 2.439 2.439 1.476 1.435 
2048 x 2048 103.3 106.7 171.5 173.8 4.464 4.326 2.691 2.655 
4096 x 4096 487.1 501.5 760.6 770.6 4.133 4.014 2.647 2.613 
8192x8192 1868.1 1921.8 2986.0 3022.7 4.670 4.539 2.922 2.886 

16384x16384 7470.4 7648.2 11846.3 11916.6 5.031 4.914 3.172 3.154 

64X64X64 Data is provided for 

both ordered and unordered FFT. 
Performance of local FFTs for different array sizes is 

given in Table V and Fig. 11. The peaks in Fig. 11 
correspond to array sizes for which only radix-8 kernels are 
used. The performance for 64-bit precision is about 75-80 % 
of the performance for 32-bit precision. The difference is due 
to the fact that the data path between each floating-point 
unit and its memory is 32-bits wide. Data paths internal to 

the floating-point unit are 64-bits wide. The performance of 
the DIT kernels is 90-95 % of the DIF kernel performance 
for most sizes. The difference is due to minor differences in 
the construction of arithmetic pipelines for the floating- 
point processor. Table VI gives performance data for 
ordered local transforms. Large ordered transforms are 
about 10% slower than unordered transforms. For trans- 
forms of size 1024 the ordered transform is about 20% 
slower than the unordered transform. The ordering phase 
requires one traversal of memory regardless of the size of the 
array, whereas the computation of the FFT requires several 
traversals. 

TABLE VIII 

Performance Data for Two- and Three-Dimensional, Ordered, CCFFT on a 2048 Processor CM-200 

Axis length 

256 x 256 
512x 512 

1024 x 1024 
2048 x 2048 
4096 x 4096 
8192x8192 

16384x16384 

64X64X64 

128x128~128 
256x256~256 
512x512~512 

Time (ms) Gflops/s 

32-bit prec. 64-bit prec. 32-bit prec. 64-bit prec. 

DIT DIF DIT DIF DIT DIF DIT DIF 

4.62 4.63 8.05 8.06 1.134 1.132 0.652 0.650 
16.77 16.98 29.66 29.77 1.407 1.389 0.795 0.793 
68.55 68.71 122.73 124.39 1.530 1.526 0.854 0.843 

183.36 186.66 329.43 331.76 2.516 2.472 1.401 1.391 
907.03 923.01 1598.08 1609.40 2.220 2.181 1.260 1.251 

3393.68 3448.63 6049.18 6091.06 2.571 2.530 1.442 1 A32 
13715.35 13894.09 24409.33 24475.00 2.740 2.705 1.540 1.535 

18.89 18.89 32.10 32.11 1.249 1.249 0.735 0.735 
123.10 122.71 221.53 22 1.27 1.789 1.794 0.994 0.995 

1101.56 1100.11 1930.29 1927.64 1.828 1.830 1.043 1.044 
8302.94 825 1.76 14655.03 14560.63 2.182 2.196 1.236 1.244 



396 JOHNSON, JACQUEMIN, AND KRAWITZ 

TABLE IX 

Performance of a Two-Dimensional Unordered CCFFT on a 4096 x 4096 Array Computed on a 2048 Processor CM-200 

Time (ms) Gflops/s 

32-bit prec. 64-bit prec. 32-bit prec. 64-bit prec. 

axis length DIT DIF DIT DIF DIT DIF DIT DIF 

2048 
1024 

512 
256 
128 
64 
32 
16 

8 
4 
2 

485.49 500.34 757.98 770.68 4.147 4.024 2.656 2.612 
68 1.96 675.88 1132.61 1123.06 2.952 2.979 1.778 1.793 

654.05 649.90 1097.09 1091.76 3.078 3.098 1.835 1.844 

653.05 648.55 1097.75 1092.43 3.083 3.104 1.834 1.843 
654.92 649.30 1099.37 1089.70 3.074 3.101 1.831 1.848 
645.21 641.13 1087.37 1082.66 3.120 3.140 1.852 1.860 
645.33 641.32 1087.34 1082.70 3.120 3.139 1.852 1.859 

654.82 649.23 109920 1089.65 3.075 3.101 1.832 1.848 
652.59 647.95 1094.04 1088.97 3.085 3.107 1.840 1.849 
654.74 650.95 1096.36 1093.12 3.075 3.093 1.836 1.842 
679.62 674.27 1130.14 1123.14 2.962 2.986 1.781 1.793 
487.10 501.52 760.58 770.56 4.133 4.014 2.647 2.613 

Timings for two- and three-dimensional CCFFT are 
given in Table VII and shown in Fig. 12. The significant 
increase in performance for the two-dimensional CCFFT 
between the 1024 x 1024 array and the 2048 x 2048 array is 
due to one of the axis being local to a processor for the 
larger array (there are 2048 processors). The subsequent 
minor decrease in performance for the next larger array is 
due to the fact that the axis distributed over all processors 
also has a local component of length two. This part of the 
axis requires a radix-2 kernel, which is less efficient than the 
radix-4, and the radix-8 kernels normally used. For 
reference, performance data for ordered two- and three- 
dimensional transforms are given in Table VIII. The 
execution time increases by 50-100% for our examples, 
considerably more than for entirely local transforms. 

Time (msrc) 
, 

1200 - 

0 O 0 0 0 o o 0 0 0 
1oor _ DIT 64.bit precision 

800 - 
0 

. * 
600 

. . . 
. . 

. . . 
_ DIT 32-bit precision 

. 
400 _ 

200 -I 
’ m Dimensions for FFT axis 

0 5 10 

FIG. 13. Total execution time for a two-dimensional unordered 
CCFFT on a 4096 x 4096 array as a function of the configuration of 2048 
CM-200 processors. 

Optimal efficiency is attained by maximizing the number 
of axes that have no non-local component. Recall that with 
the pipelining of communications, the number of element 
transfers in sequence is P/N + d- 1, where P/N is the 
number of elements per processor, and d is the number of 
inter-processor dimensions over which an axis subject to 
transformation is spread. The number of element transfers 
in sequence is approximately independent of the number of 
axis d, except if d = 0, in which case no communication is 
required. The performance variation once an axis is dis- 
tributed across processors is minor, as can be seen in 
Table IX. For a two-dimensional FFT of shape 4096 x 4096 
the worst performance, once an axis is distributed across 
processors, is at most 5% below the peak in 32-bit preci- 
sion, and at most 3.5 % below peak in 64-bit precision. The 
difference between a distributed axis and a local axis is 
about 20% in 32-bit precision and close to 30% in 64-bit 
precision. 

6. SUMMARY AND DISCUSSION 

We have shown that for consecutive data allocation, 
normal order input, and a Boolean cube interconnection 
network allowing concurrent communication on all 
channels of every processor, a direct pipelined radix-2 FFT 
and an FFT based on multi-section or i-cycles [20, 223 all 
yield essentially the same communication requirements. The 
number of element transfers in sequence is P/N + d- 1 for 
a transform on an array of size P distributed evenly over 
N processors, with the axis subject to transformation 
distributed over 2d processors. For a cyclic data allocation 
and normal input order, or bit-reversed input order and 



COMMUNICATION EFFICIENT MULTI-PROCESSOR FFT 391 

consecutive data allocation, an FFT based on multi-section corresponding execution rates for the ordered transforms 
requires about half as many element transfers in sequence as are 2.7 and 1.5 Gflops/s, respectively. The execution rates 
a direct pipelined FFT. for large one-dimensional transforms is slightly higher and 

We have also shown that with precomputed twiddle slightly lower for three-dimensional transforms. 
factors a DIT FFT for consecutive data allocation and 
normal order input requires approximately the same total 
storage on a distributed memory architecture as on a shared 
memory architecture. No computation or communication 
of twiddle factors is necessary with this amount of storage. 

A DIF FFT requires the same twiddle factors in the same 
processors if the input is in bit-reversed order and the data 
allocation consecutive. Hence, a pair of unordered forward 
and inverse Fourier transforms computed using a DIT and 
a DIF FFT can use the same twiddle factors, stored in 
exactly the same way in the distributed memory. 

An implementation of the Cooley-Tukey FFT based on 
multi-sectioning yields perfect arithmetic load balance, 
while the direct pipelined FFT does not. Hence, even for 
data allocations where there is no gain in the communica- 
tion requirements, an FFT based on multi-section has 
advantages. However, for our implementation on the 
Connection Machine systems we concluded that the multi- 
section approach would be inferior. The reason is that the 
multi-section approach requires data in the processor inter- 
changes to come from different memory locations, which 
incurs a performance penalty of 3&100% on the Connec- 
tion Machine systems CM-2 and CM-200, compared to the 
direct pipelined FFT algorithm. The decrease in com- 
munication performance is in most cases greater than, or 
approximately equal to, the gain from an increased com- 
putational efficiency in the kernels evaluating splitting 
formulas. 

Though a radix-2 FFT was chosen for the FFT stages 
requiring communication, a mix of radix-2,4, and 8 kernels 
are used for stages local to each processor. The peak perfor- 
mance of our implementation of the CC FFT on the Con- 
nection Machine system CM-200 is 12.9 Gflops/s in 32-bit 
precision and 10.7 Gflops/s in 64-bit precision for 
unordered transforms. The corresponding data for ordered 
transforms is 11.1 Gflops/s and 8.5 Gflops/s, respectively. 
The peak performance for unordered two-dimensional 
transforms distributed over all processors is 5.0 Gflops/s in 
32-bit precision and 3.2 Gflops/s in 64-bit precision. The 

2. 
3. 
4. 
5. 

6. 

I. 

8. 

9. 
10. 
11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 
21. 
22. 

REFERENCES 

J. P. Brunet and S. L. Johnsson, Technical Report TR-21-91, Harvard 
University, Division of Applied Sciences, August 1991. 
J. C. Cooley and J. W. Tukey, Math. Compu?. 19,291 (1965). 
A. Edelman, J. Parallel Distrib. Comput. 11, 328 (1991). 
D. Fraser, J. Assoc. Comput. Much. 22,298 (1976). 
W. M. Gentleman and G. Sande, in Proceedings AFIPS Fall Joint 
Computer Conference, 1966, p. 563. 
J. W. Hong and H. T. Kung, in Proceedings, 13th ACM Symposium on 
the Theory of Computation, 1981, p. 326. 

S. L. Johnsson, J. Parallel Distrib. Comput. 4, 133 (1987). 
S. L. Johnsson, SIAM J. Sci. Stat. Comput. 8, 354 (1987). 
S. L. Johnsson and C. T. Ho, SIAM J. Matrix Anal. Appl. 9,419 (1988). 
S. L. Johnsson and C. T. Ho, IEEE Trans. Comput. 38, 1249 (1989). 
S. L. Johnsson and C.-T. Ho, Technical Report YALEU/DCS/RR-764, 
Department of Computer Science, Yale University, February 1990. 
S. L. Johnsson and C.-T. Ho, Technical Report TR-04-91, Harvard 
University, Division of Applied Sciences, January 1991. 
S. L. Johnsson and C.-T. Ho, in The Sixth Distributed Memory 
Computing Conference (IEEE Comput. Sot., New York, 1991), p. 299. 

S. L. Johnsson, C.-T. Ho, M. Jacquemin, and A. Ruttenberg, in 
Advanced Algorithms and Architectures for Signal Processing II, 
Vol. 826 (Sot. Photo-Opt. Instrum. Eng., Redondo Beach, CA, 1987), 
p. 233. 
S. L. Johnsson, R. L. Krawitz, D. MacDonald, and R. Frye, in 
Supercomputing 89, (ACM, New York, 1989), p. 809. 
H. J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms 
(Springer-Verlag, New York/Berlin, 1982). 
A. V. Oppenheimer and R. W. Schafer, Digital Signal Processing 
(Prentice-Hall, Englewood Cliffs, NJ, 1975). 
L. R. Rabiner and B. Gold, Theory and Application of Digital Signal 
Processing (Prentice-Hall, Englewood Cliffs, NJ, 1975). 
E. M. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms 
(Prentice-Hall, Englewood Cliffs, NJ, 1977). 
P. N. Swarztrduber, Parallel Computing 5, 197 (1987). 
Thinking Machines Corp., CM-Fortrun Release Notes, 1991. 
C. Tong and P. N. Swarztrauber, J. Parallel Distrib. Comput. 12, 50 
(1991). 


